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Some Major Obstacles to Simulation-Based Design

e Modeling

— Simulation-based functions are expensive and not computationally
robust

— Difficult to obtain reliable and affordable derivatives
e Optimization

— Algorithms for simulation-based design are in their infancy
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ASCoT Project (1998-2002)

(Aerospace Systems Concept to Test)

Project Vision

Physics-based modeling and simulation with sufficient speed and accuracy for
validation and certification of advanced aerospace vehicle design in less than 1 year

Project Goal P :
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Aeroelasticity Electromagnetics

- Physics-Based Flow Modeling

- Fast, Adaptive, Aerospace Tools
(FAAST) (CFD and Design)

- Ground-to-Flight Scaling
- Time-Dependent Methods
- Design for Quiet

- Risk-Based Design

Benefit
+ Increased Design Confidence
+ Reduced Development Time
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Limiting Factors

e Extreme expense of repeated simulations

— Example: turbulent computation on 1 M grid points (Nielsen and
Anderson)

x 1 day for submission, 3-4 days in queue
« 8 hours per 1 design cycle on 112 CPU
+ 10 design cyclesz 9000 CPU hours for a simple single-point design

e Cost of solution is driven by simulations

e Function and derivative evaluations prone to failure away from nominal
design

e Derivative-free optimization is not an option due to computational expense
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Approach

e ENngineering

— A variety of approximations and models available and used for a long
time
— Ad hocoptimization technigues
e Mathematic Programming
— Generally limited to local Taylor series models
— Rigorous and robust optimization techniques

e Approximation and Model Management (AMMO)

— Use of Engineering approximations and models
— Rigorous and robust optimization techniques

— Can be used with any gradient-based algorithm
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Conventional Optimization

AMMO Idea

Objective: reduce cost of design
optimization with simulations

Optimization
High-fidelity codes

AMMO

ZEER Optimization ¢ BB

Low-fidelity codes

\7

F' M High-fidelity codes BE

AMMO gives Navier-Stokes answers with five-fold savings
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Problem

e The analysis or simulation problem: Given «x, solve a system of coupled equations
A(xz,u(x)) =0
for u that describes the physical behavior of the system.

e The design problem (canonical formulation): Solve

minimize  f(x, u(x))

subjectto c;(xz,u(x)) =0, 2 € £
ci(x,u(x)) <0, i €T

) < x < Xy,

where, givenz, u(x) is determined from A(x, u(x)) = 0.

e In our context, “large-scale” means computationally expensive, regardless of the
number of variables and constraints explicitly manipulated in optimization.
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Ensuring local similarity of trends
e Convergence relies on ensuring local similarity of trends

Let f, ég, and & be some lower-fidelity models off, cg and ¢y, respectively.
At each major iteration k, x;, of an AMMO algorithm, the models are required
to satisfy first-order consistency:

f(zr) = f(z), ce(rr) = ce(xk), cr(zr) = cr(xk)

Vf(xr) = Vf(xr), Vér(xr)= Ver(xr), Vér(zr) = Ver(z)

e Models with this property locally mimic the behavior of first-order
Taylor-series models aroundz,

e Easily enforced when derivatives are available
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Enforcing First-Order Consistency

e Multiplicative “ 3-correction”, Haftka, 1991

— Given ¢y;i(z) (say, f) and ¢uo (), definef(x) = 2]

— Givenay, build B (x) = B(z.) + VB(zx)" (xz — xx)

— Then ¢y (x) = Br(x)di,(x) satisfies the consistency conditions aty,

e Additive correction exist. For instance (Lewis and Nash, 2000):

bk () = dio(x)+[bhi(zk) — Plo(zk)]+[V Phi(zk) — Vio (z)] T (z—zk)
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Examples of Variable-Fidelity Models for Use in AMMO

Data-fitting models (polynomial RS, splines, kriging)

— Rely directly on hi-fi information; do not require derivatives; simple to
construct; difficult to sample; “curse of dimensionality”

Reduced-order models

— Use reduced-order bases (constructed as a span of solutions and possibly
derivatives at some points) to represent field variables at other points

Variable-accuracy models
— Converge analyses to a user-specified tolerance

Variable-resolution models
— Executing a single physical model on meshes of varying degree of refinement

Variable-fidelity physics models

— E.g., in aerodynamics, physical models range from inviscid, irrotational,
iIncompressible flow to Navier-Stokes equations for nonlinear viscous flow
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Convergence vs. Performance

e Convergence analysis relies on the consistency conditions and standard
assumptions for the convergence analysis of the underlying algorithm (see
paper for three examples)

e For convergence, need only a notion of two models, one arbitrarily
designated “high fidelity” or “truth”, the other - “low fidelity”

e Practical efficiency

Problem/model dependent

Depends on the ability to transfer computational load onto low-fidelity
computation, which...

Depends on the predictive quality of the low-fidelity models (surrogates)

In the worst case, AMMO is conventional optimization
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Example: AMMO Based on &, QP

AMMO can be used with any derivative-based algorithm; to date, implemented
and tested AMMO based on five algorithms

Principle: a simple implementation with maximum use or existing software
Problem: have not found software suitable for simulation-driven optimization

Resolution: writing our own

Meanwhile: nonsmooth exact penalty functions - a potential alternative to SQP;
simple merit function, similar convergence properties (Fletcher 1989)

Consider a composite penalty function

P(x;h) = f(x) + h(c(x)),

where f and ¢ are smooth andh is convex but possibly only continuous.
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S0, QP
Fletcher’s choice of P is the penalty function
P(x;o) = f(z) +o Y |ei(x)| + o Y max{0,ci(x)}.
(ASY i€l
This is an exact penalty function ifo satisfies

o > min |A;],
teL

where L is the set of all multipliers for the NLP. The model of P is

m(xg, s;0) = q(xg,s) + o Z i (zg, 8)| + o ZmaX{O,l,,;(:ck, s)},

ASY i€1

where q(xg, s) is the quadratic model of f and l; (x, s) are linearizations of
constraints. The prototype ¥, QP finds global solutionss,, of

minimize m(xg, s; o)
S

subjectto || s ||, < Ag
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S¢,QP, continued

The step is evaluated by examining

P(xr; o) — P(xr + Sk; or)

as follows:
m(xy,0;0r) — m(xk, Sk; Ok)

Pk —

Select0 < ry <r; <landl0 < k1 <1< Kas.
Typical values arer; = 0.25, ro = 0.75, k1 = 0.25, ko = 2.

I If Pk <0
SetCBk+1 = _
xr + s otherwise

”

k1l se || If pr <m1

Ko AL if p, > r2 and || Sk || = Ayg

| Ag otherwise.
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S, QP-AMMO Model and Algorithm

m(k, Tk, s;0) = f(kv Tk, S)+o Z |CE,i(k, Tk, 8)|+O Z max{0, ¢r,:(k, zk, s)}
i€ E i€

whose components satisfy the consistency conditions. Note that the modeldepends

on k. as follows.

Initialization: Choosexq, Ao, and constants as above.
Dok = 0,1,... untl convergence:
Model construction:
Construct model m(k, xx, s; o) of P
Step computation:

minimize m(k, ¢k, ;o)
S

Solve for sy,
subject to | s || < Ag

Step evaluation: Compute pg. Accept or reject the step based o, as above.
Updates: Update x,, A based onp; as above.
End do

n.alexandrov@Iarc.nasa.gov Multidisciplinary Optimization Branch, NASA Langley Research Center



Department of Aeronautics/University of Rome, March 2002 18

Convergence of $; QP-AMMO

Theorem:

Let f, cg,cr € C?(2) have bounded second derivatives on a bounded

Q C IR™. Let f ¢g, ¢ € C?(Q) be any models off cg, and ¢y, respectively,
that satisfy the first order consistency conditions and have uniformly bounded
second derivatives orf2. Let {x,} € Q be the sequence of iterates generated
by S¢; QP—-AMMO. The there exists an accumulation pointz,. at which the
first-order optimality conditions for minimizing 7P hold, that is,

maximize (g, + Ve A)1's > o forall s,
AEOh.. —

where dh, is the generalized derivative ofh.
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An Alternative S¢; QP-AMMO

Impose the following conditions on the model and the trial step:

SmoothnessThe modelm is locally Lipschitz continuous and regular with respect
to s for all (x, o) and continuous in(x, o) for all s.

Zero-order matching: The values of the function and model coincide wher = 0.

First-order matching: The generalized directional derivatives of the function and
model coincide whens = 0.

Bounded parameters:The set of problem parameters is closed and bounded.

Sufficient decreaseFor any x., there exist constants, e, k € (0, 1) such that sy
satisfies

m(ka Tk, 0, o'k) — m(ka Lky Sk o'k) Z K ” g(in,) ” min{57 Ak}a

whereg = arg mingesy || g ||. These conditions are summarized in CGT 2000.
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An Alternative S¢; QP-AMMO, continued

In S¢; QP-AMMO, the smoothness, boundedness, zero- and first-order
matching conditions are satisfied by assumption. Guaranteeing sufficient

decrease - in progress.
Updates for &1 QP-AMMO with sufficient decrease

SQIECtAmaw >0,0<r S T2 S 1andO < 1/1‘\',3 S K1 S ko <1 < R3.

xr + sk If pr > 1

Set(il:k_|_1) = {

T otherwise.

”

(K1 Ak, Ko Ap] if pr < 71
SetAkt1 € § [RK2Ag, Ag] if pr. € [r1,72)
K3 Ak, K2 Amaz]| If p > 2.

\

Convergence to a first-order critical point is immediate under these conditions
(see, e.g., Theorem 11.2.5in CGT 2000).
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Computational Demonstrations

Because of data-fitting model limitations, we have focused on models that
are independent of the number of variables

Independence wrt dimension is important: in preliminary design,
problems of modest size number O(100) variables

AMMO admits a wide variety of models and algorithms; demonstrations
are aimed at accumulating realistic experience to validate the algorithmic
performance

Because we cannot predica priori the relative descent characteristics of
models, must include cases of favorable and unfavorable relationship
between models

Aerodynamic shape optimization is a good test problem: practically
important, computationally intensive, comes in a variety of dimensions

n.alexandrov@Iarc.nasa.gov Multidisciplinary Optimization Branch, NASA Langley Research Center
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Demonstration Problems: Aerodynamic Optimization

shape flow conditions

l state variables,
integrated quantities

(€9, &) |

CFD analysis

lift

minimize Integrated quantities, such as— % (a@)or C'p (drag coefficient)

subjectto constraints on, e.g., pitching and rolling moment coefficients, etc.

T < < Iy
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Managing Variable-Resolution Models:
(AIAA-2000-0841, Alexandrov, Lewis, Gumbert, Green, Newman)

e Analysis: Euler (NS/Euler code CFL3D, Rumsey et al., NASA LaRC)
e Conditions: M., = 0.6, = 3.0

e Design variables: tip chord, tip trailing edge setback

Planform view

XLg =(0,0,0)

Profile view

T
e
A | Xt

XLE =(0,0,0)

Xt

A<

e Objective: — &

e Constraints in lieu of multidisciplinary constraints: a lower bound on total
lift Cr.S, upper bounds on the pitching moment coefficienC'y; and the rolling
moment coefficientC;
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3D Wing Optimization: Problem Description

Low-fidelity: analysis on 97x25x17 mesh, 8 min/analysis on Sun SPARC 1.:

High-fidelity: analysis on 193x49x33 mesh, 64 min/analysis on Sun SPARC 1.

n.alexandrov@Iarc.nasa.gov Multidisciplinary Optimization Branch, NASA Langley Research Center
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3D Wing Optimization: Problem Level Sets, Example

8 N (B3RN0 GNN I ENATXESN il

X

tip trailing edge setback

tip chord
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3D Wing Optimization: Actual Functions vs. Spline Substitutes

tip trailing edge setback
tip trailing edge setback

3

tip trailing edge setback
tip trailing edge setback

tip chord
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3D Wing Optimization: Actual Functions vs. Cubic Polynomial Substitutes

tip trailing edge setback

tip trailing edge setback

3

N
o

N

tip trailing edge setback
- &

o
2

tip chord

tip trailing edge setback

tip chord
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3D Wing Optimization: Discussion of Results

e Function evaluations, conventional SQP vs. SQP-AMF (number of
sensitivity evaluations - same):

hi-fieval | lo-fieval | equiv hi-fieval | factor

Conventional SQP on poly 31 31
SQP-AMF on poly 4 51 4+51/8=103/8] 2.99
Conventional SQP on splines 21 21

SQP-AMF on splines 4 28 4+28/8=71/2

e Optimization convergence criterion: 10~°>
e Optimization was done on RSM substitutes

e Savings across methods similar

n.alexandrov@Iarc.nasa.gov Multidisciplinary Optimization Branch, NASA Langley Research Center
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2D Airfoil Optimization: Problem Description
Problem formulated and assembled by L.L. Green

Analysis: Euler (NS/Euler code FLOMG, Swanson, Turkel)

Design variables:

maximum
thickness

maximum x

L

Objective: — 5

Constraints: pitching moment
Levels of fidelity: analyses on 257x65 and 129x33 meshes
Time/analysis on 257x65 mesh = 4 Time/analysis on 129x33 mesh

e Approximately 8 min vs 2 min per analysis on SGI Octane

n.alexandrov@Iarc.nasa.gov Multidisciplinary Optimization Branch, NASA Langley Research Center
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2D Airfoll Optimization: Discussion of Results

[N
N
(6]

max thickness
o

[ =]

= =

[6)] N

max thickness

o
[
[

max camber max camber

e Savings in function/sensitivity evaluations approximately twofold (factor
ranging from 2.2 to 3.1) across all methods

e Savings lower than for the 3D wing problem due to lower computational
expense
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Managing Variable-Fidelity Physics Models: Multi-Element Airfoll
(AIAA-2000-4886, Alexandrov, Nielsen, Lewis, Anderson)

A two-element airfoil designed to operate in a transonic regime — inclusion of
viscous effects is very important

Governing equations: time-dependent Reynolds-averaged Navier-Stokes

429 | ﬁ-ﬁdl—]{ F, - adl = 0,
o o

ot
where F; and F,, are the inviscid and viscous fluxes, respectively
Flow solver (FUN2D) — unstructured mesh methodology (Anderson, 1994)
Sensitivity derivatives — hand-coded adjoint approach (Anderson, 1997)

Conditions:

— M., = 0.75
— Re =9 x 10°

— o = 1° (global angle of attack)
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Multi-Element Airfoil, cont.

e Hi-fi model — FUN2D analysis in RANS mode
e Lo-fimodel — FUN2D analysis in Euler mode

e Computing on SGI OriginT™ 2000, 4 R10OK processors

Viscous mesh: Inviscid mesh:

1947 nodes and 3896 triangles

| il = s | ! Lf R

" o "'.-,.r"- | i _-I"' ™ 1 L ."-' ) %
P {1 =T L L& L= A .'k\* il SR
L™ e e i e o O R E, |

t/analysis~ 21 min t/analysis~ 23 sec
t/sensitivity = 21 or 42 min t/sensitivity = 100 or 77 sec
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Multi-Element Airfoil: Viscous Effects

Frame 001 030 Aug 2000 O FUN2D Frame 001 030 Aug 2000 O FUN2D

Mach number contours, viscous model Mach number contours, inviscid model

e Boundary and shear layers are visible in the viscous case.
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Multi-Element Airfoil: Computational Experiments

e ODbjective function: minimize drag coefficient subject to bounds on variables
e Case 1:(for visualization)

— Variables: angle of attack, y-displacement of the flap

— Solve problem with hi-fi models alone using a commercial optimization code
(PORT, Bell Labs)

— Solve the problem with AMMO, PORT used for lo-fi subproblems
e Case 2:

— Variables: angle of attack, y-displacement of the flap, geometry description of
the airfoil; 84 variables total

— Same experiment

n.alexandrov@Iarc.nasa.gov Multidisciplinary Optimization Branch, NASA Langley Research Center
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Multi-Element Airfoil: Models

e Time/function for inviscid model negligible compared to viscous model

e Descent trends are reversed — unusual but a good test

Frame 001 020 Sep 2000 OMULTI-ELEMENT AIRFOIL: VISCOUS FUNCTION DATA Frame 001 020 Sep 2000 OMULTI-ELEMENT AIRFOIL: INVISCID FUNCTION DATA

Drag coefficient contours, viscous Drag coefficient contours, inviscid
2 U

0.0162 0.0158//
0
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Multi-Element Airfoil: AMMO lterations with 2 Variables

lteration 1. Starting point: « = 1.0, y-disp= 0.0
High-fidelity objective vs. corrected low-fidelity objective

Frame 001 020 Sep 2000 OMULTI-ELEMENT AIRFOIL: VISCOUS FUNCTION DATA Frame 001 031 Aug 2000 OMULTI-ELEMENT AIRFOIL: CORRECTED LO-FI DATA

Drag coefficient contours, viscous Drag coefficient contours, corrected inviscid

I T
-
)

'%ol
C Yo
=\

SAML

New point: a = 2.0, y-disp= —0.01
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Multi-Element Airfoil: AMMO Iterations with 2 Variables, cont.

Similar effect in the next iteration

Solution (¢ = 1.6305°, flap y-displacement= —0.0048) located at
iteration 2

Cigitial = 0.0171 at (o« = 1°, flap y-displacement= 0)

anal — 0.0148, a decrease of approximately 3.45%.
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Multi-Element Airfoil: Performance Summary

Notation: No. functions / No. Gradients

Test hi-fi eval | lo-fi eval total t factor
PORT with hi-fi analyses, 2 var 14/13 ~ 12 hrs

AMMO, 2 var 3/3 19/9 ~ 2.41hrs
PORT with hi-fi analyses, 84 var| 19/19 ~ 35 hrs

AMMO, 84 var 4/4 23/8 ~ T7.2hrs
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Current Results (with E. J. Nielsen)

3D Aerodynamic Design with AMMO

Hi-fi: ['UN.]D N-‘Sol a ﬁm'r mrs'll Lo-fi: ['UNJD Enlrr an 1:0.1[5: miesh

1(CL — 0.12303)"

:miimf_i:xzu

@0=3.06°, Mo.=0.84, Re=5x10°

s, SRR b A iy
5 = =

"Q""’f.:;:ﬁrnﬁiiw?f‘ No. gradients) _
Test Hi-fi eval | Lo-fi eval | Final Lift | Final Drag f

PORT /hi-fi | 13/11 0.11148 0.01532 | 0.0012793
AMMO 3/3 22 /15 0.10657 0.01511 | 0.0012796

- Factor 2 savings in terms of wall-clock time

« Further savings are expected upon development of optimal termination
criteria for low-fidelity subproblem computations

+ Large-scale 3D slot wing design in progress
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Work in Progress

e Computational expense is still a difficulty

— Investigating optimal termination of the low-fidelity computations
based on sufficient predicted decrease

— Investigating MASSOUD (J.A. Samareh) as a potential robust and
efficient volume grid manipulation tool

— Choice of “optimal” models
e EXxplicit constraint handling in optimization problems

— Complex derivatives

— Adjoints when design variables outhumber responses

e Handling mesh adaptation or regenerating meshes in optimization

e Robust handling of analysis and mesh movement failure
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